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ABSTRACT: Dynamic control of enzyme expression can be an effective
strategy to engineer robust metabolic pathways. It allows a synthetic
pathway to self-regulate in response to changes in bioreactor conditions or
the metabolic state of the host. The implementation of this regulatory
strategy requires gene circuits that couple metabolic signals with the
genetic machinery, which is known to be noisy and one of the main
sources of cell-to-cell variability. One of the unexplored design aspects of
these circuits is the propagation of biochemical noise between enzyme
expression and pathway activity. In this article, we quantify the impact of a
synthetic feedback circuit on the noise in a metabolic product in order to propose design criteria to reduce cell-to-cell variability.
We consider a stochastic model of a catalytic reaction under negative feedback from the product to enzyme expression. On the
basis of stochastic simulations and analysis, we show that, depending on the repression strength and promoter strength,
transcriptional repression of enzyme expression can amplify or attenuate the noise in the number of product molecules. We
obtain analytic estimates for the metabolic noise as a function of the model parameters and show that noise amplification/
attenuation is a structural property of the model. We derive an analytic condition on the parameters that lead to attenuation of
metabolic noise, suggesting that a higher promoter sensitivity enlarges the parameter design space. In the theoretical case of a
switch-like promoter, our analysis reveals that the ability of the circuit to attenuate noise is subject to a trade-off between the
repression strength and promoter strength.

KEYWORDS: dynamic metabolic engineering, genetic feedback circuits, biochemical noise, enzymatic reactions, promoter design,
feedback control design

Pathway engineering relies on heterologous enzymes that
use the metabolic intermediates of a host as precursors for

chemicals of industrial relevance. To date, pathway design uses
a combination of computer-aided optimization and trial-and-
error experimentation.1,2 This is typically a lengthy process
aimed at ruling out designs in which the chosen enzyme
expression levels lead to lethal metabolic imbalances or
impractically low yields.
A promising approach to optimize pathway design is to make

enzyme expression dependent on the concentration of
metabolic species.3−5 This regulatory strategy is ubiquitous in
natural pathways that need to sustain their homeostatic levels
under changing environmental conditions.6,7 In synthetic
systems, pathway self-regulation can be achieved with gene
circuits that dynamically up- or downregulate enzyme
expression in response to changes in the level of a metabolite
of interest. These feedback circuits can be designed to achieve
in vivo self-regulation of enzyme levels that are compatible with
the stoichiometric and kinetic constraints of the pathway under
consideration.8

Following the first successful implementation of a feedback
circuit for biofuel production,5 in a recent work, we described
some of the fundamental trade-offs in the design of a gene
circuit for pathway control.8 For a circuit based on a
metabolite-responsive transcription factor, we identified con-

straints that prevent metabolite accumulation in terms of the
promoter dynamic range and ribosomal binding site strengths.
Other works have addressed a number of alternative circuit
designs, including a quorum-sensing mechanism coupled with a
genetic toggle switch9,10 and the dynamic regulation of biofuel
efflux pumps.11 Altogether, this body of theoretical work has
started to reveal the potential of gene circuits for pathway
control, but we still lack a comprehensive understanding of how
circuit design affects metabolic performance.
A design aspect that has been overlooked so far is the

propagation of biochemical noise between enzyme expression
and metabolic pathways. Genetic processes such as transcrip-
tional and translational initiation typically depend on molecules
that appear in low numbers and therefore are inherently
noisy.12,13 As a consequence, individual cells in an isogenic
population can reach vastly different expression levels of the
same protein. In natural systems, noise regulation is vital
because of its decisive role in a number of cellular responses,
including cell differentiation, DNA mutation, and cell death.14

Cells typically need to attenuate noise to execute their functions
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accurately, but some cellular phenotypes have also been shown
to depend on stochastic decisions.15 In engineered pathways,
however, uncontrolled cell-to-cell variability can be detrimental
to metabolic production goals and thus synthetic gene circuits
should ideally achieve low noise levels.
Stochastic effects in metabolic pathways were first studied

in16 considering fluctuations in substrates and a constant
abundance of catalytic enzymes. The propagation of noise
between enzyme expression and metabolism, however, has
been typically neglected on the basis that high metabolite
counts average out stochastic effects. As a consequence, nearly
all studies on biochemical noise have focused on gene
expression in isolation from metabolism (two exceptions are
a simulation study on the tryptophan operon in B. subtilis17 and
a noise sensitivity method applicable to metabolic reactions18).
Although this assumption may be justified in natural metabolic
networks, engineered pathways can operate in low-yield
regimes where the effects of noise become more apparent.
Moreover, classical results in Control Engineering19 indicate
that the propagation of noise in feedback systems can be
shaped by an appropriate design of the regulatory feedback.
The effect of feedback on gene expression noise was first
demonstrated in two seminal works20,21 that suggested negative
autoregulation as a mechanism for attenuation of stochastic
fluctuations in protein numbers. Further theoretical22−26 and
experimental27 research has revealed a more intricate relation
between negative feedback and noise, indicating that noise can
be attenuated or amplified depending on the feedback strength.
In this article, we quantify the impact of transcriptional

repression on the noise in metabolic product in order to
identify design criteria to reduce the impact of genetic noise in
synthetic pathways. We focus on a metabolic reaction coupled
with the feedback circuit shown in Figure 1. (The reaction

propensities and parameters for this model are shown in Table
1.) In this system, the metabolic product represses the
expression of the catalytic enzyme via a transcriptional circuit.
A possible implementation of this circuit is via a transcription
factor that controls the expression of a metabolic gene in
response to the level of product.5 We base our study on a
stochastic model for the feedback circuit in Figure 1 and a
combination of stochastic analysis and simulations. The model
accounts for catalysis, product-dependent enzyme expression,
enzyme degradation, and export of the metabolic product. We
use a lumped model for gene regulation parametrized in terms
of the promoter strength, promoter sensitivity, and repression
strength, all of which are considered as design parameters and
can potentially affect the levels of metabolic noise.
One of the key challenges of genetic−metabolic systems is

that, owing to the wide separation of time scales between
enzyme expression and enzyme kinetics, stochastic simulations

are impractically slow to run. We overcame this problem by
using a fast simulation algorithm tailored for genetic−metabolic
systems.28,29 We computed histograms of the stationary
distributions of product and enzyme molecule numbers for
different circuit designs. Using the squared coefficient of
variation of these distributions as a measure of noise,13,22,23,30

we quantified the effect of feedback parameters on noise and
compared it to the case of constitutive enzyme expression. The
simulations suggest that (a) a weak repression or weak
promoter effectively attenuate noise but above critical strengths,
the circuit leads to amplification of noise and (b) the promoter
sensitivity enhances noise attenuation and amplification.
Motivated by these numerical observations, we used the linear
noise approximation31 to obtain analytic estimates for the
metabolic noise as a function of the design parameters. We
analytically proved the validity of the attenuation/amplification
phenomenon for these estimates and obtained a simple
condition on the design parameters for noise attenuation. In
the limit case of a switch-like promoter, we show that
attenuation of metabolic noise is subject to a trade-off between
the promoter strength and repression strength, in which
attenuation can be achieved by strong promoters that are
weakly repressed or, conversely, by weak promoters under
strong repression.

■ RESULTS AND DISCUSSION
Stochastic Model for an Enzymatic Reaction under

Transcriptional Feedback Repression. We consider a
metabolic reaction that converts a substrate, S, into a product,
P, via an enzyme, E, that is repressed by the product. The
model system is shown in Figure 1, including the binding and
dissociation of the substrate and enzyme into a complex, C, the
degradation of enzyme molecules, and the export of product
outside the cell. This type of circuit has been implemented, for
example, with metabolite-responsive transcription factors5

(TF). We assume that the number of substrate molecules is
constant, accounting for scenarios in which the substrate is an
extracellular nutrient pool consumed by a low-density cell
population. Note that with this assumption we exclude the case
in which the catalytic reaction eventually depletes the substrate
and reaches a nil equilibrium.
If we define n = (nE, nC, nP)

T as the vector of molecule
numbers and assume that the probability that two molecules
bind depends only on the current state of the system (and not
on its history), then the evolution of the probability distribution
P(n,t) satisfies the chemical master equation31
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The quantities ai in the master equation are the reaction
propensities, so ai × dt is the probability that reaction i occurs
in an infinitesimal time interval, dt. With the exception of the
gene regulatory interaction, the propensities in Figure 1
correspond to mass action kinetics (Table 2). We model
gene regulation via a sigmoidal function that describes the

Figure 1. Stochastic model for a metabolic reaction under transcrip-
tional repression from the product. Species S, E, C, and P represent
the substrate, enzyme, substrate−enzyme complex, and product,
respectively; the individual reactions are described in Table 2.
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input−output characteristic of the promoter in response to the
metabolic product

β
α

=
+

a
n1 ( / )h4

P (3)

The model for a4 is a lumped description of the processes that
interface the metabolic product with enzyme expression. In
particular, when using a metabolite-responsive TF, the
propensity a4 includes both the TF-product binding and the
TF-mediated repression of promoter activity. We parametrize
the enzyme expression model in terms of three design
parameters:

(1) Promoter strength. β represents the maximal activity of
the promoter in the absence of product molecules.

(2) Promoter sensitivity. h is a Hill coefficient describing the
sensitivity of the promoter to changes in the product
around the threshold α.

(3) Repression strength. α is the repression threshold (in
numbers of product molecules) required to reduce the
probability of enzyme production by 50%. The inverse of
the threshold, 1/α, corresponds to the strength of the
feedback repression.

The promoter strength can potentially be modified, for
example, via the RNA polymerase binding sites,32 whereas
promoter sensitivity has been successfully manipulated with
protein sequestration mechanisms.33 The manipulation of the
repression strength will largely depend on the specific
biochemical mechanism used to couple the metabolic product
with enzyme expression (for example, when using a metabolite-
responsive TF, the repression strength can be modified via the
TF-product binding affinity).
We quantify the noise in the number of product molecules

by the squared coefficient of variation of its stationary
distribution. We define the metabolic noise as ηP

2 = σP
2/μP

2,
with μP and σP being the mean and standard deviation of the
marginal stationary distribution of nP. The stationary
distribution is a time-independent solution of the master
equation and describes the statistics of molecule numbers after
transient effects have vanished. Analytic solutions for the
stationary distribution can be obtained only in few special
cases,34,35 and, in general, the most common alternative is to
compute ηP

2 from histograms of sufficiently long realizations of
the stochastic model.
The noise ηP

2 is a dimensionless quantity that has proven to
be useful to quantify the size of stochastic fluctuations in
biochemical systems.13,22,23,30 To quantify the effect of
transcriptional regulation on the metabolic noise, we also
define the relative noise η̃P

2 as the noise in the product
normalized to the noise generated by a constitutive promoter
with the same strength. For a given promoter strength β, the
relative noise is η̃P

2 = ηP
2/η̃P unreg

2 , with ηP unreg
2 being the noise in

the product obtained with a constant propensity for enzyme
expression (a4 = β). The relative noise has been previously used
to quantify stochasticity in gene expression;26 here, we use it to
determine whether transcriptional regulation amplifies or
attenuates metabolic noise with respect to constitutive enzyme
expression by checking the condition η̃P

2 > 1 (amplification) or
η̃P
2 < 1 (attenuation).
Fast Simulations of the Stochastic Model. Gillespie’s

algorithm36 is the classic approach for stochastic simulation of
chemical systems. Although the algorithm gives statistically
exact simulations, in the case of enzymatic reactions it entails

impractically long simulation times (on the order of tens of
hours per run) that prevent the quantification of metabolic
noise as a function of the circuit design parameters. This is
because the binding and dissociation reactions (labeled 1 and 2
in Figure 1, respectively) occur on a much shorter time scale
than the product-forming reaction (reaction 3 in Figure 1);
therefore, the algorithm needs to simulate thousands of binding
and dissociation reactions per each birth of a product molecule.
The inclusion of enzyme expression in our model aggravates
this computational limitation, as gene expression dynamics
occur on an even slower time scale than catalytic conversion.
We used the slow-scale simulation algorithm28 to overcome

these computational problems and to compute approximate
stationary distributions rapidly. The algorithm is based on a
time scale separation, and in a previous work29 we adapted it to
account for metabolic reactions with constant substrate,
product export/consumption, and enzyme expression and
degradation. In Figure 2, we show one run of the adapted

algorithm, providing stationary distributions that are practically
indistinguishable from those computed with Gillespie’s
algorithm. The approximate distributions can be computed
up to 3 orders of magnitude faster than the exact simulations
and thus the algorithm is suitable for exploring the effect of the
circuit parameters on the metabolic noise.
We ran stochastic simulations of the feedback system for

different combinations of repression strength, promoter
sensitivity, and promoter strength. The results, summarized in
Figure 3, indicate that

(1) The negative feedback reduces the mean number of
product molecules and the variance of stochastic
fluctuations with respect to a constitutive promoter.
Note that for varying repression strengths and a fixed
promoter strength (as in Figure 3A) the constitutive case
is independent of α and corresponds to 1/α = 0, whereas
for varying promoter strengths and a fixed repression
strength (as in Figure 3B), the statistics of the

Figure 2. Fast stochastic simulations of the enzymatic reaction in
Figure 1. (A) Time course of the number of product molecules
computed with a fast simulation algorithm tailored for genetic−
metabolic systems.29 (B) Stationary distributions of species molecule
numbers for the parameters in Table 2, with a repression threshold of
α = 10 molecules, promoter strength β = 0.16 molecules s−1, and
sensitivity h = 1.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400126a | ACS Synth. Biol. 2015, 4, 116−125118



constitutive case depend on the promoter strength
(represented as black crosses in Figure 3B).

(2) A stronger repression or a weaker promoter lead to a
decrease in the mean number of product molecules. We
observe a similar monotonic behavior in the product
variance for stronger repression but not for weaker
promoters.

(3) The relative noise η̃P
2 displays a nonmonotonic behavior

with respect to the repression strength and promoter
strength. This suggests that weak repression or a weak
promoter attenuate noise (η̃P

2 < 1) but above a critical
repression or promoter strength, the feedback can
amplify noise (η̃P

2 > 1). This phenomenon seems to
appear only in the case of a Hill coefficient greater than 1
and, moreover, more sensitive promoters lead to a more
pronounced effect on the relative noise. We observed
similar trends in the stationary statistics of the number of
enzyme molecules (see Supporting Information Figure
S1).

Analytic Characterization of Metabolic Noise. To
understand the effect of the repression strength and promoter
sensitivity on the metabolic noise, we sought to obtain an
estimate for ηP

2 as a function of the model parameters. We used
the linear noise approximation31 to compute estimates of the
stationary distribution and its corresponding coefficient of
variation (details are given in Methods A). This approximation
assumes that the molecular fluctuations are small deviations
around the mean and provides an analytic expression for a

Gaussian approximation of their stationary distribution. As
observed in Figure 3, the approximation predicts noise curves
with the same nonmonotonic behavior observed in the
stochastic simulations. This is expectable given the Gaussian-
like distributions observed in the simulations (Figure 2B) and
that the enzyme kinetic parameters satisfy the conditions that
validate the linear noise approximation.38 With a constant
number of substrate molecules, the enzyme operates in a
kinetic regime characterized by a constant turnover rate (i.e. a
constant catalytic rate per unit of enzyme). For an enzyme with
a turnover rate g (in units of s−1), the relative metabolic noise
predicted by the linear noise approximation is (details are given
in Methods B)
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where μP is the mean number of product molecules, k5 is the
enzyme degradation rate constant, k6 is the rate constant of
product export, and k = k5k6/g. The formula in eq 4 shows the
dependency of the relative metabolic noise on the mean
number of product molecules μP. However, because the mean
μP also depends on the model parameters but cannot be written
as an explicit function of them, the expression for η̃P

2 does not
fully reveal the dependency of the noise on the design
parameters. We used the expression in eq 4 to prove
analytically that the relative noise is a nonmonotonic function
of the repression strength and promoter strength (details are

Figure 3. Statistics of the number of product molecules for different feedback parameters. (A) Fixed promoter strength (β = 0.16 molecules s−1)
with different combinations of repression strength and promoter sensitivity. (B) Fixed feedback strength (α = 500 molecules) with different
combinations of promoter strength and sensitivity. The relative noise is the squared coefficient of the variation of the stationary product distribution,
normalized to the squared coefficient of the variation of the distribution obtained with a constitutive promoter with the same strength, η̃P

2 = (σP/
μP)

2)/η̃P unreg
2 . The parameter ranges used in the stochastic simulations cover physiologically relevant mean product concentrations in E. coli37 (∼58

nM to 2 μM in panel A and ∼50 nM to 15 μM in panel B). The product statistics obtained for a constitutive promoter as a function of the promoter
strength are also shown in panel B. The markers are the values computed from stationary distributions obtained via fast stochastic simulations; the
solid lines are the predictions of the linear noise approximation. All of the remaining parameters are reported in Table 2. The results for the enzyme
molecule numbers are shown in Supporting Information Figure S1.
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given in Methods C and the Supporting Information). The
analysis reveals that attenuation of metabolic noise appears
when the Hill coefficient is h > 1, as suggested by the
simulations in Figure 3, and indicates that it is a structural
feature of the considered model for feedback repression.
The simulations in Figure 3 suggest that promoter sensitivity

can enhance the attenuation and amplification of metabolic
noise. We explored this dependency further by computing the
predictions of the linear noise approximation for a more fine-
grained and larger range of promoter sensitivities (Figure
4A,B). We found that an increased promoter sensitivity
enlarges the region for noise attenuation. Detailed analysis of
the estimate in eq 4 revealed that feedback repression
attenuates noise when the repression strength (1/α) and
promoter strength (β) satisfy the condition (details are given in
Methods C and the Supporting Information)

β
α

< −k
w

w
w

1
h

(5)

where w is the constant

=
+ +

+w
k

k k g h
16

5 6 (6)

The condition in eq 5 describes all combinations of
repression strength and promoter strength that lead to
attenuation of metabolic noise. As illustrated in Figure 4C,
this condition can be understood as a critical line in a
logarithmic (1/α,β) parameter space. In addition, we observe
that the constant w decreases in the sensitivity (h) and

therefore more sensitive promoters tend to expand the range
for noise attenuation.
In the theoretical case of a switch-like promoter, the noise

curves approach a limit given by (details are given in Methods
D)
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The limit η̃limit
2 is shown in red dashed line in Figure 4A,B, and

its minimum value is the best possible noise attenuation the
feedback can achieve. The condition for noise attenuation in
the case of a switch-like promoter is (details are given in
Methods D)
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As shown in Figure 4D, the limit η̃limit
2 can be understood as an

attenuation band in a logarithmic (1/α,β) parameter space. The
shape of the attenuation band (Figure 4D) suggests that for
switch-like promoters noise attenuation is subject to a trade-off
between the repression and promoter strengths. The width of
the attenuation band is (details are given in Methods D)
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Figure 4. Attenuation and amplification of metabolic noise in the negative feedback circuit. (A) Relative metabolic noise η̃P
2 for a fixed promoter

strength (β = 0.16 molecules s−1) and increasing repression strength and promoter sensitivity. (B) Relative metabolic noise η̃P
2 for a fixed repression

strength (α = 500 molecules) and increasing promoter strength and sensitivity. The curves are predictions of the linear noise approximation as given
in eq 4, with the promoter sensitivity ranging from h = 1 to 40. The dashed red line corresponds to a switch-like promoter (the curve η̃limit

2 shown in
eq 7). (C) Parameter space for noise attenuation. The green area represents the combinations of repression and promoter strength that lead to noise
attenuation. As shown in eq 5, in logarithmic scale, the boundary of the attenuation region is a line with slope −1. The attenuation region expands
for increasing sensitivities (the plotted regions correspond to sensitivity h = {2,4,8}) and approaches the switch-like case (marked in red dashed line).
(D) Parameter space for noise attenuation with a switch-like promoter. The attenuation band represents condition 8, and its width, Δ, is given by the
expression in eq 9. In all panels, the remaining parameters were taken from Table 1.
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where τP = ln 2/k6 is the half-life of the metabolic product.
Note that in eq 9 we have used the fact that the time scale of
enzyme degradation is much longer than the time scale of
product export so that the parameters typically satisfy k5 ≪ k6.
The width of the attenuation band therefore depends on the
interplay between the enzyme catalytic efficiency (via the
turnover rate g) and the processes that catalyze the export of
the metabolic product (via the product half-life τP). Note that,
in particular, the formula for Δ suggests that noise attenuation
seems to be negligible for inefficient enzymes.
Discussion. Genetic regulation is widespread in natural

metabolic pathways, and numerous examples6,7,39 demonstrate
how cells can use transcriptional feedback to control their
homeostatic levels robustly and to generate diverse pheno-
types.40 Despite their ubiquity in natural systems, the use of
genetic circuits in engineered pathways is relatively new. This
novel approach has been termed “dynamic metabolic engineer-
ing”,9 with successful case studies being the seminal work on
lycopene production3 and recent applications to biofuel and
fatty acid synthesis.5,41

One of the biggest challenges in building these circuits is the
poor availability of modular mechanisms that can interface
metabolic species with gene expression. Some of the
approaches explored to date include natural and engineered
promoters5,42 and metabolite-responsive riboswitches.43 Even if
those interface mechanisms were in place, however, we still
have a limited understanding of how circuit parameters should
be tuned to achieve a satisfactory performance. In this article,
we focused on noise propagation, a commonly overlooked
aspect of synthetic circuit design. Biochemical noise can have
functional roles in natural systems,14 but for metabolic
production, we seek a low noise in metabolic fluxes in order
to narrow the variability across a population of isogenic cells.
We aimed at understanding the effect of feedback circuit
parameters on the propagation of noise in a catalytic reaction in
order to propose design criteria for noise attenuation.
We found that depending on the repression and promoter

strength, the feedback circuit can attenuate or amplify the noise
levels in the metabolic product. Mild repression or weak
promoters have an attenuating effect, but above a critical
strength, they lead to amplification of noise with respect to a
constitutive promoter. Intuitively, for a stable feedback system,
feedback repression reduces the fluctuations of the metabolic
product by increasing enzyme expression when the product is
low and by decreasing enzyme expression when the product is
high. Our results corroborate this intuition because in all
explored cases we observed that negative feedback reduces the
variance of product and enzyme fluctuations. However, when
looking at the size of the fluctuations relative to their mean (by
the squared coefficient of variation), our results suggest a
nonmonotonic relation between the feedback parameters and
noise.

To understand the attenuation/amplification phenomenon
further, we used the linear noise approximation31 to show
analytically that it is a structural feature of the considered
model. A number of previous works on autoregulatory gene
circuits22−25,27 have established that negative feedback alone
does not imply attenuation or amplification of protein noise;
instead, product noise seems to behave nonmonotonically with
respect to the repression strength. Our results suggest that a
similar dependency underpins the propagation of noise
between enzyme expression and a metabolic product and,
moreover, that attenuation/amplification of noise appears also
as a function of the promoter strength.
We found a condition on the circuit design parameters (the

promoter strength, promoter sensitivity, and repression
strength) that leads to attenuation of noise in the metabolic
product. This condition, shown in eq 5 and Figure 4C, is a
simple and intuitive description of how the design parameters
affect the ability of the synthetic circuit to attenuate noise. In
particular, it suggests that noise attenuation is possible only
when the Hill coefficient of the promoter characteristic is h > 1
and that the parameter space for noise attenuation grows with
the use of more sensitive promoters. Ultrasensitive regulation
has been previously shown to improve flux adaptation in
unbranched metabolic pathways44 and to improve noise
rejection in signaling cascades.45 Our results suggest that
ultrasensitivity is also beneficial for the attenuation of metabolic
noise and, in particular, in the case of a switch-like promoter,
noise attenuation is ultimately constrained by a trade-off
between the repression strength and the promoter strength. As
illustrated in Figure 4D, this trade-off means that noise
attenuation can be achieved by either strong repression of a
weak promoter or weak repression of a strong promoter.
We have previously shown that strong promoters in a

feedback circuit can effectively compensate for disturbances in
metabolic fluxes.8 Our results on noise further indicate that
promoter design must account for the interplay between the
ability to dampen disturbances and the deleterious amplifica-
tion of noise. These findings suggest that such design
compromise can be alleviated by using the repression strength
as a new design “knob” to fine-tune the balance between
disturbance rejection and noise amplification.
Because natural pathways typically operate in regimes of high

metabolite counts, it is commonly assumed that they average
out stochastic effects from enzyme expression. In addition, it
could be argued that evolution has shaped the natural
regulation of metabolic fluxes in order to reduce the variability
introduced by genetic noise. Synthetic pathways, in contrast,
require the assembly of genetic parts that have not evolved
together and have been manipulated via, for example, promoter
engineering to control transcription, the design of ribosomal
binding sites to tune the strength of translation,46 and the use
of degradation tags to control protein half-lives.47 Our results

Table 1. Some Enzymes Subject to Natural and Synthetic Transcriptional Regulationa

enzyme natural (N) or synthetic (S) pathway Km

β-galactosidase (N) lactose operon39 8.3 mM (allolactose)
PRA isomerase (N) tryptophan operon39 4.7−7 μM
phosphoenolpyruvate synthetase (S) lycopene biosynthesis3 83 μM (pyruvate)
IPP isomerase (S) lycopene biosynthesis3 0.8−22.5 μM
alcohol dehydrogenase (S) biofuel synthesis5 10.6 mM

aThe Km values are those reported in the BRENDA database48 for E. coli; for enzymes with data for several substrates, the chosen one is indicated in
brackets.
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indicate that these interventions may significantly shape the
propagation of noise between the genetic and metabolic layers.
Moreover, the effects of noise may become even more apparent
in heterologous pathways operating in low-yield regimes, where
the stochastic fluctuations of metabolites can be significant as
compared to their average concentrations.
We have discussed our results in terms of design parameters

that can typically be tuned with current experimental
techniques while leaving the enzyme kinetics fixed. However,
the noise properties of a metabolic reaction also depend on the
kinetic parameters of its enzyme. As illustrated in Table 1,
kinetic parameters can vary across several orders of magnitude
for different enzymes and organisms. They are also subject to
large uncertainty because they are estimated from in vitro assays
that do not necessarily represent their in vivo kinetics. As a
consequence, the design of a feedback circuit for a particular
metabolic reaction may require a case-by-case analysis to
determine whether the effect of noise is an important or a
negligible aspect to be considered in the design.
We have deliberately used a lumped model for gene

expression that allowed for a detailed computational and
mathematical analysis of the circuit. The cost of this
approximation is the loss of the biochemical mechanisms
involved in the regulatory circuit. These cannot be neglected if
the design requires fine-tuning of the repression strength, as the
way to do so will largely depend on the specific biochemistry
used to interface the pathway with the genetic machinery.
Mechanistic models may also be important for studying the
effect of transcriptional bursting.49 Proteome and transcriptome
data in E. coli suggests that bursting may be significant for some
metabolic enzymes,50 and it is unclear how enzyme bursts
propagate through an enzymatic reaction. The complexity of
detailed mechanistic models leads to significant computational
and mathematical challenges that will require new tailored
approaches to quantify stochasticity in genetic−metabolic
systems. A number of approaches hold promise in this regard,
including extensions to the linear noise approximation that
exploit the separation of time scales51 and simulation
algorithms tailored for multiscale biochemical systems.52

In this work, we focused on the properties of intrinsic noise
in metabolic reactions, that is, the noise coming from the
inherent stochasticity of molecular interactions. It is widely
accepted that gene expression noise can be ascribed to both
intrinsic and extrinsic sources.30 Extrinsic noise stems from
variability in components of the genetic machinery (such as
polymerases and σ factors) and environmental effects such as
variability in extracellular substrates. The effect of stochastic
fluctuations in substrate abundance has been explored

previously16 for metabolic pathways with constant enzyme
concentrations. However, further work needs to be done to
establish how synthetic feedback circuits affect both intrinsic
and extrinsic stochasticity in metabolic pathways. This and
other open questions can be addressed with model-based
approaches as the one used here, which can provide valuable
insights into the design of gene circuits for metabolic
engineering.

■ METHODS
A. Linear Noise Approximation. Let dc/dt = Nv(c) be the

deterministic differential equation model corresponding to a
stochastic chemical system, where c = n/V is the vector of
species concentrations (in molecules per liter) in a volume V, N
is the stoichiometric matrix, and v(c) is the vector of
macroscopic reaction rates. Assuming that the mean molecule
numbers match the steady-state concentration, μ = Vc ̅ with
Nv(c)̅ = 0, and that the fluctuations are small around the mean,
the stationary distribution P(n) can be approximated by a
multivariate Gaussian μ Σ( , ) with a covariance matrix
satisfying a Lyapunov equation31

Σ + Σ + =A A VBB 0T T (10)

where A = N ∂v/∂c|c=c ̅ is the Jacobian of the rate vector and BBT

= Ndiag{υi}N
T.

B. Derivation of the Metabolic Noise. To obtain analytic
expressions for the noise in the metabolic product, we start
from a deterministic ODE model for the system in Figure 1

= −
c
t

gc k c
d
d

P
E 6 P (11)

= −
c
t

f c k c
d
d

( )E
P 5 E (12)

where cx = nx/V is the concentration of species x (in molecules
per liter), and g is the enzyme turnover rate (in units of s−1) for
a constant number of substrate molecules. The function f is the
rate of enzyme synthesis, which, by comparison with propensity
a4, can be written as f(cP) = βc(1 + (cP/αc)

h), with parameters βc
= β/V and αc = α/V. The steady-state product concentration is
the solution of the equation

̅ = ̅f c kc( )P P (13)

with k = k5k6/g. It can be numerically checked that the steady-
state product concentration of the model in eqs 11 and 12
satisfies the key assumption behind the linear noise
approximation cP̅ ≈ μP/V, where μP is the mean number of
product molecules obtained via stochastic simulations.

Table 2. Reaction Propensities and Parameters for the Model in Figure 1a

description propensity parameter

a1: substrate−enzyme binding k1nEnS k1 = 1 s−1 molecule−1

a2: substrate−enzyme dissociation k2nC k2 = 28 300 s−1

a3: product formation k3nC k3 = 3.2 s−1

a4: transcriptional repression β/(1 + (nP/α)
h)

a5: enzyme degradation k5nE k5 = 10−3 s−1

a6: product export k6nP k6 = 2 × 10−2 s−1

aIn the stochastic model, species are given in the number of molecules and time is given in seconds. For an E. coli volume of V = 10−15 L,53 the
kinetic parameters correspond to an enzyme with kcat = 3.2 s−1 and Km = (NAV)

−1(k2 + k3)/k1 = 47 μM, with NA = 6.022 × 1023 mol−1, being the
Avogadro constant. The degradation and export rate constants, k5 and k6, were chosen to reflect a 20-fold difference between the product and
enzyme half-lives. The number of substrate molecules was fixed to nS = 3000. The specific values for the regulatory parameters α, β, and h are
reported in each figure.
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From the deterministic model in eqs 11 and 12, the
stoichiometric matrix and the vector of macroscopic reaction
rates are

υ=
−

−
= ̅ ̅ ̅ ̅

⎡
⎣⎢

⎤
⎦⎥N gc k c f c k c

1 1 0 0
0 0 1 1

, [ ( ) ]T
E 6 P P 5 E

(14)

To compute the metabolic noise, we substitute N and v into eq
10 and analytically solve for the covariance matrix

σ σ

σ σ
Σ =

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

c c c

c c c

2

2

P P E

P E E (15)

where σcP
2 and σcE

2 are the variances of the concentrations of

product and enzyme, respectively, and σcPcE is their covariance.
The metabolic noise can then be obtained as the ratio ηP

2 =
(σcP/cP̅)

2, with cP̅ given by the solution of eq 13. After algebraic
manipulations (details omitted for brevity), we obtain an
expression for the metabolic noise

η
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where f ′(cP̅) = ∂f/∂cP|cP=cP̅ and kg = k5(k5 + g)/g. From the
definition of f(cP) it follows that f ′(cP̅) = −hk2cP̅h+1/(βcαc

h),
which after substituting in eq 16 and rearranging terms, leads to
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The noise for the case of constitutive enzyme expression can be
computed by taking the limit α → ∞ in eq 17

η
μ

= +
+

⎛
⎝⎜

⎞
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g
k k

1
1P unreg

2

P unreg 5 6 (18)

where μP unreg is the mean product number obtained with a
constitutive promoter. Taking the limit α → ∞ in the steady-
state equation in 13, we get μP unreg = β/k, which, after
substitution in eq 18, gives

η
β

= +
+

⎛
⎝⎜

⎞
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k g
k k

1P unreg
2

5 6 (19)

The final expression for η̃P
2 in eq 4 can obtained as the ratio of

eqs 17 and 19.
C. Attenuation and Amplification of Metabolic Noise.

We sought to validate analytically the behavior of the relative
noise η̃P

2 suggested by the simulation results in Figure 3. On the
basis of the estimate of the linear noise approximation given in
eq 4, we proved that (a) η̃P

2 ≈ 1 for small 1/α or small β, (b) η̃P
2

> 1 when 1/α or β are large, and (c) η̃P
2 < 1 if and only if the

parameters satisfy the condition in eq 5.
Note that because the mean μP depends on all the

parameters of the model (through the steady-state equation
in 13, which does not have an analytic solution) it is not
straightforward to use the formula in eq 4 to draw conclusions
on how η̃P

2 behaves as a function of the parameters. We proved
(a) and (b) by computing asymptotic expressions for η̃P

2 (in
particular, we showed that log η̃P

2 grows linearly, with slope h/
(h + 1), in log 1/α and log β when these parameters are

sufficiently large). We proved (c) by algebraic manipulations of
the inequality η̃P

2 < 1. The detailed calculations are presented in
the Supporting Information.

D. Theoretical Limit of the Metabolic Noise for
Switch-Like Promoters. To compute the limit expression
in eq 7, we note that when h → ∞ the solution of the steady-
state equation in 13 is

μ
β α β α

α β α
=

<

>⎪

⎪⎧⎨
⎩

k

k

/ for / ,

for /P
(20)

The expression for η̃limit
2 can then be obtained by substituting eq

20 into the estimate for η̃P
2 in eq 4 and taking the limit h → ∞.

The condition for noise attenuation in eq 8 can be obtained by
substituting eq 7 into the inequality η̃limit

2 < 1. The width of the
attenuation band Δ can be obtained by applying the logarithm
to the width of the range in eq 8.
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M., and Serrano, L. (2006) Noise in transcription negative feedback
loops: simulation and experimental analysis. Mol. Syst. Biol. 2, 41-1−
41-12.
(28) Cao, Y., Gillespie, D., and Petzold, L. (2005) Accelerated
stochastic simulation of the stiff enzyme-substrate reaction. J. Chem.
Phys. 123, 144917.
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